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1. INTRODUCTION 

Buoyancy generated turbulence plays an important 
role in the dynamics of atmospheric boundary layers 
and engineering applications such as space heating 
and cooling, electronic equipment cooling and solar 
collectors. While shear-generated turbulence (mech- 
anical turbulence) has been studied extensively leading 
to the development of reasonably reliable engineering 
tools (turbulence models), buoyancy-generated tur- 
bulence is relatively less scrutinized [l]. Many of the 
engineering calculations of thermally-dominated 
flows typically employ empirical correlations involv- 
ing non-dimensional parameters such as Nusselt, 
Grashof and Rayleigh numbers. These empirical cor- 
relations lack generality and are usually useful only in 
situations for which they have been calibrated. There- 
fore, in buoyant turbulent flows, there is certainly a 
need for turbulence models that are based on gov- 
erning equations of the flow and, hence, possess a 
reasonable degree of generality. Accurate modeling of 
buoyancy-generated turbulence requires, at least, a 
working knowledge and understanding of that 
process. Data gathered from laboratory experiments 
are usually limited to integral quantities such as heat 
and mass transfer coefficients. While these quantities 
are very useful for ultimately validating the models, 
they lack sufficient detail to shed light on the physics 
of buoyant turbulence. Direct numerical simulation 
(DNS), a calculation wherein all of the time and length 
scales of turbulence are resolved, can provide data 
with the required degree of detail to study the physics 

of buoyancy generated turbulence. Although DNS 
is usually restricted to simple geometry and modest 
Reynolds numbers, it captures important universal 
aspects of the physics and has led to the development 
of some reasonable models of shear-generated tur- 
bulence. It is only recently that DNS data has been 
used in the development of buoyant turbulence 
models. Do1 et al. [2], and Girimaji and Hanjalic [3] 
have used DNS turbulent natural convection data of 
Boudjemadi et al. [4] and Versteegh et al. [5] to study 
certain modeling assumptions and ultimately validate 
the models. The turbulent convection in this case is 
between two parallel vertical plates at different tem- 
peratures and this configuration gives rise to shear as 
well as buoyancy-generated turbulence. 

Our objective in this paper is, using DNS data, to 
study the Reynolds stress and turbulent thermal flux in 
a flow where buoyancy is the only source of turbulence 
production. The turbulent flow in the present case is 
the Rayleigh-Bernard convection between two hori- 
zontal parallel plates at different temperatures. The 
lower plate is hotter than the upper plate leading to 
unstable stratification. The turbulence is statistically 
homogeneous along horizontal planes. The mean vel- 
ocity is zero everywhere and, hence, there is no shear 
production of turbulence. Rayleigh-Bernard con- 
vection offers a unique flow situation in which buoy- 
ancy-generated turbulence can be studied in isolation, 
free from the complicating influence of shear-gen- 
erated turbulence. The four specific objectives of this 
paper are to: (i) evaluate the pressure-strain and 
pressure-temperature gradient correlation models 
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using DNS data ; (ii) study the turbulent transport of 
Reynolds stress and thermal flux; (iii) examine the 
various modeling assumptions made to derive 
algebraic stress models; and (iv) develop fully explicit 
algebraic models for Reynolds stress and thermal flux. 

The paper is organized as follows. In Section 2, the 
governing equations of Reynolds stress and turbulent 
thermal flux are presented along with their standard 
closure models. Algebraic models for the Reynolds 
stress and thermal flux are also developed. Description 
of the numerical simulation of turbulent Rayleigh- 
Bernard convection is given in Section 3. We use the 
simulation data to evaluate and develop various closure 

models in the Reynolds stress and turbulent thermal flux 
evolution equations in Section 4. Also in Section 4, we 
examine the validity of the various assumptions made in 
the algebraic stress methodology. We conclude in Sec- 
tion 5 with a brief discussion. 

2. GOVERNING EQUATIONS AND MODEL 

DEVELOPMENT 

The buoyant turbulent flow considered here is gov- 
erned by the usual conservation of mass (continuity), 
momentum (Navier-Stokes) and temperature 
(energy) equations subject to the Boussinesq approxi- 
mation. The flow variables are decomposed into their 
mean (upper case symbols) and fluctuating (lower 
case symbols) parts and the equations are Reynolds 
averaged (averaging is indicated by angular brackets). 
The resulting Reynolds-averaged Navier-Stokes 
equations are given in most standard text books and 
are not presented here. These averaged equations con- 
tain two unclosed terms, the Reynolds stress ((~~a,)) 
and the turbulent thermal flux ((u&). 

2.1. Transport equations for (u,u,) and (uiQ) 
The transport equation for Reynolds stress in a 

buoyant turbulent flow (with no mean velocity gradi- 
ents) is given by [6] 

where the subscript ,k indicates differentiation in the 
k direction. The terms, respectively, are the time rate 
of change, advection, buoyant production (G,,), dis- 
sipation (E,), pressure-strain correlation (4& and 
total turbulent diffusion (gi,) of Reynolds stress : 

G,, = -B[(utQ>gi + (~,~>gil 

6, = 2V<w4,.k) 

40 = ($ (u., + U,,i)) 

The acceleration due to gravity is given by g,, v is 
kinematic viscosity of the fluid, and p0 is the reference 
density of the fluid. The buoyant production and dis- 
sipation rate of turbulent kinetic energy K = (u,u,)/2 
are, respectively, G = G,,/2 and E =e,J2. The dissi- 
pation rate tensor can be split into its isotropic and 
anisotropic (deviatoric) parts as follows : 

c,, = ;a?,, + d;,. (3) 

Citing small scale isotropy, the anisotropy of dis- 
sipation is generally neglected. The pressure-strain 
correlation is usually modeled as [6] 

+ <“,e>g, - f<“ko)gka,, 

> 

(4) 

where C, (usually chosen value lies between 3 and 5) 
and C, (in the range 0.33-0.6) are numerical 
constants. In shear-generated turbulence, the pres- 
sure-strain correlation model will also be a function 
of the mean flow strain rate and vorticity tensors. 

The evolution equation of the thermal flux is 

awu 
~+“k<uz~),k = Pis+G,,+~j~+~,,-~,~,. (5) 

The terms in the equation correspond to: the time 
rate of change, advection, thermal production (PJ, 
buoyancy production (G,,), pressure-temperature 
gradient correlation (I&), total turbulent diffusion 
(9J and viscous dissipation (Q) : 

4~” = 2.z ; cc0 = cv+ K)<U,,kS,k) 

i > 

b,k-(U,eUk)+V(eU,,k)+IC(U,H.k) 1 ,k 

(6) 

The thermal diffusivity of the fluid is K. The pressure- 
temperature correlation (in the absence of mean flow 
velocity gradients) is usually modeled as [6] 

hi = - c,o &,e> + c,,(pg,(e’)). (7) 

The value of the constant C,O in most models range 
from 3 to 5 and CjO is between 0.33 and 0.5. The 
viscous dissipation (E,~) of thermal flux also needs 
to be modeled. In sufficiently high Reynolds number 
flows, the small scales are approximately isotropic 
leading to E,@ being zero. At lower Reynolds numbers, 
especially near the walls, viscous dissipation of ther- 
mal flux may be non-zero and is modeled as [l] 
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wheref,, is a function of the turbulent Peclet number 
and goes to zero at sulhciently high Reynolds number. 
The viscous dissipation rate of temperature variance 
is given by a0 = ~(0.~6,~). 

2.2. Algebraic modeling of (u,u,) and (u,O) 
Often, for calculating practical flows, it is com- 

putationally too expensive to solve six differential 
equations for the Reynolds stress and three more for 
thermal flux. A more viable approach is the two-equa- 
tion level of turbulence modeling. At this level of 
turbulence modeling, the mean fields, turbulent kin- 
etic energy, scalar variance and dissipation rate are 
obtained by solving their respective evolution equa- 
tions. Closure is achieved by modeling Reynolds stress 
and thermal flux with algebraic expressions in terms 
of the known quantities. We now seek to formulate 
algebraic models for the anisotropy of Reynolds stress 
and the correlation coefficient between velocity and 
temperature fluctuations. We will ultimately verify the 
validity of the modeling assumptions using simulation 
data. 

The anisotropy of the Reynolds stress is defined as 

so that 

2 
<w,) = 2Kb,,+ -KC?,,. 3 (10) 

The correlation coefficient between the thermal and 
velocity fluctuations is defined as 

F,=$&. (11) 

It is easily seen that the Reynolds stress and thermal 
flux can be calculated once b,, F,, K and (0’) are 
known. 

The governing equations of turbulent kinetic energy 
and temperature variance are 

dK 
- = G--E+~~ 
dt 

and 

d<e*) ~ = 2(P, -&&so 
dt 

(12) 

(13) 

where the substantial derivative d/dt = a/&+ Uj( . )j. 
In the above equations, the production of temperature 
variance is given by 

PB = - (l&T, (14) 

and 9K = 9,,/2 and ~9~ = (~(0’),~,- (u#*),,) are the 
total turbulent transport of kinetic energy and tem- 
perature variance respectively. 

2.3. Transport equations for b, and Fi 
The rate of change of the anisotropy tensor and 

thermal flux correlation coefficient can be evaluated 
using chain rule 

db,_ 1 d(u+,) (uiuj) dK 
dt ---p-p- 2K dt 2K2 dt 

(15) 

and 

(16) 

Since we are dealing with normalized quantities, it is 
best to consider the evolution equations in normalized 
time. The turbulent velocity and thermal timescales 
can be defined, respectively, as 

(17) 

The overall timescale (r) of the buoyant process is 
taken to be the geometric mean of the individual tim- 
escales : 

z = JZJ”. (18) 

Time increment in normalized time is given by 
dt* = dt/r. 

The evolution equation of the anisotropy tensor can 
be easily derived by substituting eqns (l), (4) and 
(12) into eqn (15). In normalized time, the evolution 
equation is 

db,_ 
dt* - 

The following normalizations have been used : 

The transport equation for the thermal flux cor- 
relation coefficient is derived by substituting eqns (5), 
(7), (8), (12) and (13) into eqn (16) : 
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-F@o; +.L,j- ;F,[&(; -I) 

+2&(:-l)] 

+;Fie+$j]. (21) 

We can simplify the various production to dis- 
sipation ratios as follows : 

2.3.1. Weak equilibrium assumption. In slowly 
evolving flows, the mean quantities (p and g:) evolve 
more slowly in space and time than the turbulence 
quantities (b,, and FJ. The turbulence quantities, in 
normalized time, quickly settle down to equilibrium 
values on the imposition of mean flow parameters. 
The weak-equilibrium assumption states that the tur- 
bulence is approximately in equilibrium with the 
imposed mean flow parameters. The equilibrium state 
of the turbulence can be obtained by setting the sub- 
stantial derivative of the normalized turbulence quan- 
tities to zero : 

db, _ df,l = 0, 

dt* -dt* (23) 

Further, in the weak-equilibrium limit we assume 
that the turbulent transport of anisotropy tensor and 
the thermal flux correlation coefficient are negligible. 
This is equivalent to the following models for tur- 
bulent transport : 

2.4. Algebraic model for bi, 
The transport eqn (19) for the anisotropy of Rey- 

nolds stress, on invoking the weak-equilibrium 
assumptions [eqns (23) and (24)] yields 

b, = 
cs - 1 

E;gT+ F,K+- ; F&P,, 
;(C, -2)-2F,g: > 

(25) 

This is the algebraic model for the anisotropy of Rey- 

nolds stress in buoyancy dominated turbulent flows. 
The anisotropy is a function of the normalized gravity 
and thermal flux vectors and the constants in the pres- 
sure-strain correlation model. 

2.5. Algebraic modelfor Fi 
Invoking the approximations in eqns (23) and (24), 

we obtain from eqn (21) 

F, = -’ 
e 

26,,Tf+;F+,lrlf 1 (26) 
where q = 1 - Cw and 

(27) 

Using eqn (22), we can write 

(28) 

where 

Qo = &IO- ;j-k +&. (29) 

The expression given in eqn (26) is not yet a model 
for F, since the thermal flux appears on the right-hand 
side of the equation also (in Q). The modeling will be 
complete only if Q can be expressed in terms of known 
quantities. 

2.5.1. Determination of Q. The quantity Q must be 
such that the model for Fl is self-consistent. Mul- 
tiplying either side of eqn (26) by (7;*+ 1/2g,“j we 
obtain : 

which can be restated using eqn (28) as 

Q(Q,, -Q) = - 

(31) 

We need to solve this equation to obtain Q. Such a 
value of Q will lead to a self-consistent model for F,. 

Define the following invariants : 

I, = bjiTf++ ;g?). (32) 

Substitution of (32) into eqn (31) leads to a quadratic 
equation for Q : 
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Q2 -QoQ-Z. = 0 (33) 

where 

z, =rll,+;1,+21,. (34) 

Therefore, 

(35) 

Clearly Q has to be real. Therefore, it is very important 
that the pressure-temperature gradient correlation 
model coefficients are such that the discriminant is 
always positive. 

In the context of Rayleigh-Bernard convection con- 
sidered here, the nondimensional mean thermal gradi- 
ent, p, exists only along the vertical direction 
(v = c = 0 and T;c # 0). At large Rayleigh 
numbers, and correspondingly large Reynolds 
numbers, this normalized vertical gradient of mean 
temperature is large and negative and confined to thin 
thermal boundary layers near the top and bottom 
boundaries. In the interior, away from the bound- 
aries, p x 0. The nondimensional gravity vector g: 
is also negative since it points opposite to the vertical 
z-direction. The negativity of both c and gf guaran- 
tees that in Rayleigh-Bernard convection Z,, Z, and Z3 
are each individually positive leading to I,, being posi- 
tive over the entire convective layer. As a result, the 
discriminant, Q i + 41,) is always positive. In the 
interior Z, can be approximated as q/2 (g:)‘. 

Given that Z, is positive, it is easy to show that one 
of the roots is always positive : 

Q”’ = Qo +,/m > 0. 

The other root is always negative : 

(36) 

Q(*)=QO-,/m<O. (37) 

On inspection of the model for thermal flux [eqn (26)] 
it is clear that a positive value of Q leads to a gradient 
diffusion of thermal flux, whereas a negative value 
means counter-gradient diffusion. In a homogeneous 
turbulent convection flow near the ‘weak-equilibrium’ 
state, counter-gradient is unphysical. Therefore, we 
deem that the only physically permissible model for 
Q is the positive root given in eqn (36). Equation (26) 
in conjunction with (36) is the fully-explicit and self- 
consistent model for the normalized thermal flux. 

3. NUMERICAL SIMULATION OF RAYLEIGH- 

BERNARD TURBULENCE 

We consider the classical problem of Rayleigl- 
Bernard convection in a layer of fluid bounded 
between two horizontal plates. When the bottom plate 
is maintained sufficiently hotter than the top plate, 
thermal instability drives the flow and at large enough 
temperature difference the flow becomes fully turbu- 
lent. Since in this configuration the mean velocity is 

identically zero, turbulence is driven purely by buoy- 
ancy and shear generation is absent. A DNS database 
[7, 81 will be used to test the validity of the various 
modeling assumptions and the effectiveness of 
algebraic modeling of Reynolds stress and thermal 
flux terms in this purely buoyancy driven flow. 

Numerical simulations were performed in a box of 
a square platform with height to width aspect ratio 
of 24. A schematic of the computational geometry 
along with the coordinates is shown in Fig. 1. The 
governing Boussinesq equation along with the incom- 
pressibility condition were solved using spectral 
methods. The top and bottom boundaries were con- 
sidered to be isothermal, impermeable and stress-free, 
while the horizontal directions were periodic. One of 
the nondimensional parameters in this formulation, 
the Prandtl number, was chosen to be 0.72 cor- 
responding to that of air. The other nondimensional 
parameter, the Rayleigh number, was chosen to be 
6.5 x 106. This Rayleigh number is nearly four orders 
of magnitude greater than the critical Rayleigh num- 
ber of 657 and this places present simulation in the 
hard thermal turbulence regime, according to the 
classification of Castaing et al. [9]. The computations 
were well resolved with a uniform grid of 96 points 
along the horizontal direction and 97 points along the 
vertical direction. Computational data was collected 
over a long duration of more than 40 eddy turn-over 
times, defined as H/K”*, where His the height of the 
convecting layer of fluid. All of the data presented 
below are nondimensionalized with a length scale of 
H, velocity scale of RaPr/2Nu(ic/H) and tem- 
perature scale of 4Nu3/RaPrAT, where K is the ther- 
mal diffusivity of the fluid, AT is the temperature 
difference between the top and the bottom boundaries. 
The Nusselt number, Nu, for the present simulation 
is about 23. The above proper scaling [IO] differs from 
the conventional diffusional scaling by factors 
J%%@% and Jm in the velocity and 
temperature scales. The diffusion scaling is well known 
to result in very large nondimensional velocity at large 
Rayleigh numbers and the above proper scaling will 
reduce all nondimensional quantities to order one. 

The periodic boundary conditions along the hori- 
zontal directions lead to translational invariance and 

Fig. I. Schematic of the computational model of Rayleigh- 
Bernard convection. 
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Fig. 2. Variation in the mean temperature, (e), mean square temperature fluctuation, (0’) and turbulent 
kinetic energy, Kin the vertical direction. 

statistical homogeneity along the x- and y-directions. 
The presence of top and bottom boundaries intro- 
duces inhomogeneity along the vertical direction. As 
a consequence, single point turbulence statistics are 
functions of only the vertical direction. Even in the 
vertical direction approximate homogeneity can be 
expected in the interior sufficiently away from the top 
and bottom boundaries. In Fig. 2, the mean tempera- 
ture, (0), the mean square temperature fluctuation, 
(0”) and the turbulent kinetic energy, K, are plotted 
as a function of the vertical coordinate. It is clear that 
the rapid variation in the mean temperature is limited 
to the two thermal boundary layers adjacent to the 
top and bottom boundaries and that the mean tem- 
perature is nearly uniform in the interior 90% of the 
convecting layer. Owing to the stress-free boundary 
conditions, the horizontal components of velocity are 
non-zero at the top and bottom boundaries, resulting 
in relatively large kinetic energy at z = 0 and 1. Both 
(0’) and K are also nearly constant over the interior 
50% of the layer. 

4. EVALUATION OF CLOSURE MODELS AND 

MODELING ASSUMPTIONS 

In this section, we use simulation data to evaluate 
models and modeling assumptions. Specifically, we 
investigate the following three important modeling 
issues : (i) pressure correlation models ; (ii) the evol- 
ution equation budgets of Reynolds stress anisotropy 
and normalized thermal flux to evaluate the validity 
of algebraic stress modeling assumptions ; and (iii) 
behavior of the turbulent transport terms. Owing to 

homogeneity along the horizontal directions (x-y 
plane), the Reynolds stress anisotropy (bij) and ther- 
mal flux correlation coefficient (F,) are both functions 
of only the vertical (z) direction. Furthermore, invari- 
ance between x- and y-directions, along with the con- 
straint b, = 0, leads to b, I = b2* = - b,,/2. From sym- 
metry arguments the other off-diagonal terms of the 
Reynolds stress anisotropy tensor are zero. Similarly, 
mean thermal flux exists only along the vertical direc- 
tion and the horizontal components of the thermal 
flux vector are zero. Therefore, in the following sec- 
tions we perform the model evaluation on the b33 and 
F3 components only. Models will be first evaluated 
with standard commonly used model constants. Using 
the DNS, optimal values of model coefficients will 
also be evaluated. Here the optimal value of the model 
coefficient is that which minimizes the root mean 
square of the difference between the data and the 
model. 

4.1. Reynolds stress models 
4.1.1. Pressure-strain correlation. Away from the 

walls, the pressure-strain correlation is the most 
important turbulence process that needs closure 
modeling. The fact that this phenomenon is present 
in the simplest of homogeneous flows as well as the 
most complex has made this one of the most studied 
turbulent processes in mechanical turbulence. The 
fluctuating pressure in buoyancy-driven turbulence 
can be divided into two parts, each governed by a 
Poisson equation : 
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p:i = Bsie,,, (38) 

where p” and pf are the slow and fast (buoyancy) 
components of pressure. Along the same lines the 
pressure-strain model is decomposed into the slow 
and fast pressure-strain correlation terms. The slow 
term is also called the return to isotropy term, since 
on the removal of all turbulence generating mech- 
anism, this term returns the turbulence from an initial 
anisotropic state to isotropic state. 

The most comprehensive pressure-strain cor- 
relation model in buoyant turbulence is given by Ris- 
torcelli et al. [1 I]. This model is constructed using 
joint realizability constraints on Reynolds stress and 
turbulent thermal flux and has the right behavior in 
rotating flows. The Ristorcelli model is, however, 
quite complicated in structure and the model most 
commonly used in practical applications is as given 
in eqn (4). When appropriately normalized, as they 
appear in the h,, evolution eqn (19), the fast and the 
slow terms of the model are 

where C, and C, are numerical constants. The more 
general pressure-strain model involves additional 
constants C,-C, and are typically used with pro- 
duction terms of mechanical origin. 

In Fig. 3, the &3 component as calculated from 
DNS data is presented as a function of vertical height 
z. The standard model with a commonly chosen value 
of 0.5 for C, is also plotted. Clearly, the model repro- 
duces the DNS results very poorly. Even the quali- 
tative trend is not captured by the model. It should be 
pointed out that the model does not contain any near- 
wall correlation terms and, hence, cannot be expected 
to do well close to the wall. But in the center region 
of the flow, the model presents a nearly flat profile, 
whereas the data clearly indicates a parabolic profile 
with the maximum at the center. In search of better 
agreement, we hypothesize an extended fast pressure 
model of a type sometimes used in mechanical tur- 
bulence : 

(40) 

where G is the buoyant production rate. The optimum 
values for Ct and C, are determined to be -3.0 and 
0.54, respectively. The optimized model is also plotted 
in Fig. 3. As can be seen, the agreement away from 
the walls is very good. The negative value of Cl is 
significant, for it implies that in energetic turbulence 
the model will remain realizable. This is because, in 
energetic, turbulence, production is positive and this 

term has the effect of bringing anisotropy back 
towards zero which is indeed the function of the pres- 
sure strain correlation, to redistribute the kinetic 
energy equally among the three components. Had the 
coefficient been positive, the new term would have 
increased the anisotropy beyond the bounds of real- 
izability in highly energetic turbulence. 

The evaluation of the slow-term model is performed 
in Fig. 4. The DNS data indicates that the slow-term 
is very large at the walls and gets progressively smaller, 
attaining its minimum near the center. The standard 
model captures the trend qualitatively, but quan- 
titative agreement leaves a lot to be desired. When an 
optimized value is used for C,, the agreement improves 
slightly near the walls at the expense of poorer agree- 
ment at the center. An expanded model, which 
included a nonlinear term in anisotropy, was tried 
without much improvement in the agreement. This 
leads us to the conclusion, that the numerical 
coefficient C, should perhaps be a variable depending 
upon the local state of the turbulence. 

4.1.2. Algebraic model verljication and budget of b,,. 
The budget of b,, evolution equation is now inves- 
tigated to evaluate the validity of the algebraic mode- 
ling assumptions. For the weak-equilibrium assump- 
tion to be valid we should have negligible rate of 
change of anisotropy following a fluid particle and 
negligible turbulent transport of anisotropy so that 
the balance is between production, dissipation and 
pressure-strain correlation. The turbulence under 
consideration here is statistically stationary and has 
no mean velocity field and, hence, there is no mean 
flow advection of anisotropy. Therefore, algebraic 
modeling assumption will be valid if the turbulent 
transport of b,i is negligible. Referring to eqn (19), the 
assumptions can be stated as 

@, = d; 2 0; 4; = -(Pk-E$. (41) 

The definitions of these terms can be easily inferred 
from eqn (19) : 

de, = &. 

In Fig. 5, 4t3, - (P!3 -E);~), 53; and dt are plotted. 
In order for the algebraic model to be successful it is 
required that +i3 z -(P& -aij) and the remaining 
terms be negligible. This is clearly not the case. The 
turbulent transport of anisotropy, although smaller 
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-2.5 - 

---- - ~~~(Optimal: +3.0 & C&=0.54) 

- - - - -. - - - &(Standard: C;=O.O & QO.5) 

Fig. 3. Pressure-strain correlation fast term: DNS data vs model. Both a standard model with Ci = 0.0 
and Cs = 0.5 and an optimal model with C: = -3.0 and C, = 0.54 are compared with the DNS data. The 
optimal value for the constants are evaluated by minimizing the difference between the model and the DNS 

data over the interior 50% of the layer. 

than the other terms, is not entirely negligible even in 
the center of the channel. This term is large enough to 
result in significant differences between the pressure- 
strain correlation model and - (Pi3 -E:~). Therefore, 
we conclude that the algebraic Reynolds stress model 
[eqn (25)] may not be appropriate for this flow. The 
anisotropy of dissipation is also shown in the figure 
and is negligible. 

4.1.3. Turbulent transport of b,,. The modeling 
assumption that the turbulent transport of bli is neg- 
ligible implies that the anisotropy of turbulent trans- 
port is identical to that of the Reynolds stress itself: 

(43) 

From Fig. 5, it is clear that such is not the case and, 
hence, we will now take a closer look at turbulent 
transport. It can be seen from eqn (2) that the tur- 
bulent transport can be classified into pressure trans- 
port, transport through triple correlation and viscous 
transport. In Fig. 6, the three components of 9i3 
calculated from the DNS data are shown as a function 
of the vertical height. While the viscous transport is 
reasonably small, the other two are certainly not neg- 
ligible. The pressure transport is particularly large 
near the walls and significant even near the center and 
needs to be carefully accounted for in modeling. 

4.2. Thermaljux models 
4.2.1. Pressure-temperature correlations. The pres- 

sure-temperature gradient correlation can again be 
decomposed into slow and fast parts which are mod- 
eled commonly as follows : 

Do1 and Hanjalic [2] found that the commonly used 
models were better suited for simulating the tempera- 
ture-pressure gradient terms. In other words, they 
propose 

e aps _ -- ! > p. axf x -c,* +9> 

e apr - -- 
i > p. axi 

= cdhw>h (45) 

Here we will be verifying their observation using the 
present DNS data. 

In Fig. 7, the slow-term model is tested against 
the pressure-temperature gradient correlation and the 
temperaturcpressure gradient correlation evaluated 
from DNS data. Result for the only non-zero, z, com- 
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2 

Fig. 4. Pressure-strain correlation slow term: DNS data vs model. Here again the results of both the 
standard and optimal pressure-strain model are compared with the DNS data. 
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Fig. 6. Components of turbulent transport of b,,. 

ponent is shown. Clearly the model reproduces the 
behavior of the temperature-pressure gradient data 
very well throughout the domain of comparison 
including the near wall regions. The optimum value 
of the coefficient is found to be Cl0 = 2.3. In Fig. 8, 
similar comparison is performed with the fast term 
model. In the interior of the flow, the DNS data shows 
that the correlations are nearly constant at their 
respective values. The fast-term model also exhibits 
nearly flat behavior. Depending upon the value of the 
model coefficient chosen, either of the correlation is 
reproduced well. The optimum value for matching 
the pressure-temperature gradient correlation is 
C,, = 0.22 and that for temperature-pressure gradient 
correlation is CXO = 0.44. The near-wall agreement in 
the fast-term case is not as good as in the slow-term 
case. 

4.2.2. Dissipation of turbulent thermal flux. The 
model for dissipation of thermal flux is given in Sec- 
tion 2 and is repeated here for convenience : 

EM = fee J&F! (46) 

where fEO goes to zero in sufficiently high Reynolds 
number flows. The dissipation of thermal flux should 
be identically zero in high Reynolds number tur- 
bulence when the small scales are statistically 
isotropic, but in a flow such as the present one, the 
Reynolds number is not high enough for sP to vanish. 

The dissipation ~3~ calculated from DNS data is pre- 
sented in Fig. 9. It has its highest value near the wall 
and is fairly low in the center of the flow. Near the 
walls the turbulence is least isotropic and hence the 
value of this dissipation is high. Away from the wall, 
the flow is more isotropic leading to lower values of 
eXO. The value of the model coefficient can be estimated 
from the DNS data as 

The value off,, thus calculated is plotted in Fig. 9. 
The coefficient appears to be a fairly strong function 
of z close to the walls, but is nearly a constant at 0.7 
near the center of the flow. 

4.2.3. Turbulent transport of F,. The turbulent 
transport of F, can be inferred from eqn (21) : 

(48) 

The algebraic assumption is that gjO can be modeled 
as 

so that @ can be neglected. 
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Pressure-temperature correlation for the slow term. DNS data vs model. The DNS data for 
the pressure-temperature gradient and the temperature-pressure gradient terms are shown. 

The validity of this assumption is verified in Fig. 10, 
where 938 and l/2 (u& [9k/k+Qg/(62)] are plotted 
using DNS data. First we plot & as defined in eqn 
(6) which is consistent with the interpretation of C& 
as the pressure-temperature gradient correlation [eqn 
(44)]. Also plotted in this figure is ~3~~ computed with- 
out the pressure-temperature correlation [see eqn (6)] 
and this formulation is consistent with the interpret- 
ation of (bJ8 as the temperature-pressure gradient cor- 
relation [eqn (45)]. The model appears to qualitatively 
capture the features well in either case, but quan- 
titative agreement is only reasonable. The overall 
agreement seems somewhat better with the inclusion 
of pressure-temperature correlation in the definition 
of L& as it appears in eqn (6). 

4.2.4. Budget of Fi evolution equation. Since the tur- 
bulence is statistically stationary, the evolution equa- 
tion of F; can be rewritten as [see eqn (21)] 

The production, dissipation, pressure-strain redis- 
tribution and turbulent transport of F, groupings can 
be surmised from eqn (21). The z component of these 
quantities are shown in Fig. 11. The production, dis- 
sipation and pressure correlation terms are clearly 

both 

larger than the transport term. Nonetheless, the trans- 
port term is not negligible, especially close to the walls. 

Due to the overall reasonable predictions of the 
pressure-temperature correlation models and some- 
what diminished size of turbulent transport in the 
center regions of the flow, the algebraic model may be 
more appropriate for the thermal flux than for the 
Reynolds stresses. The algebraic model for F3 derived 
in Section 2 is compared against DNS data in Fig. 12. 
The model displays a bi-modal behavior not seen in 
the DNS data. The maximum disagreement region 
here coincides with the rather large disagreement 
region in Fig. 7 between the fast-pressure model and 
corresponding DNS data. Despite this disagreement, 
due to fundamental validity of the algebraic assump- 
tion in the case of F,, we believe that a reasonable 
algebraic model is quite possible for Fb The search for 
a better algebraic model, however, should start with 
the development of better pressure-gradient tem- 
perature correlation models. 

5. CONCLUSION 

The various turbulent process of second order clos- 
ure modeling interest in a buoyancy driven turbulence 
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Fig. 9. A plot of dissipation of turbulent thermal flux, Q against z. Also shown is the model constant, & 
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are closely examined using direct numerical simu- 
lations data of Rayleigh-Bernard convection. This 
flow was selected for the investigation since it offers a 
unique situation where buoyant turbulence can be 
studied without the complicating influence of shear 
turbulence. 

Our study demonstrates that the commonly used 
pressure strain correlation models perform somewhat 
poorly even in the interior parts of the flow away from 
the wall effects. While the prediction of the rapid part 
of the pressure-strain correlation can be improved 
with the addition of an extended term, the ability to 
predict the slow pressure-strain correlation remains 
a challenge. Turbulent transport appears to play an 
important part in the evolution of Reynolds stress 
anisotropy and, consequently, the algebraic stress 
modeling assumptions are not well satisfied by this 
flow. 

On the thermal flux modeling side, our study 
reaffirms the observation of Do1 et al. [2] who state 
that the current models capture the behavior of pres- 
sure gradient-temperature correlation rather than 
the pressure-temperature gradient correlation. This 
would obviate the current practice of splitting the 
pressure correlation term into homogeneous and 
inhomogeneous parts. The data shows that the ther- 
mal flux dissipation is not negligible and that the 
model coefficient is nearly a constant away from the 
walls. The turbulent transport appears to play a some- 

what smaller, but still significant role in the evolution 
of thermal flux. Overall, the likelihood of a reasonable 
algebraic model appears more promising in the case 
of thermal flux, but the development of such a model 
can only come from improved pressure correlation 
models. 

Fully-explicit and self-consistent algebraic models 
for the Reynolds stress and thermal flux have also 
been derived from their respective evolution equations 
using the weak-equilibrium assumption. Although not 
quite applicable for the present flow, we expect these 
models to be adequate for realistic flows at higher 
Reynolds numbers where the assumptions made are 
likely to be more valid. 
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